List of published articles of the MatMat group and older publications of Michael Herbst.
Michael F. Herbst, Vebjørn H. Bakkestuen and Andre Laestadius. Kohn-Sham inversion with mathematical guarantees.
Michele Nottoli, Michael F. Herbst, Aleksandr Mikhalev, Abhinav Jha, Filippo Lipparini and others. DDX: Polarizable continuum solvation from small molecules to proteins. WIREs Computational Molecular Science 14, e1726 (2024). DOI 10.1002/wcms.1726
Katharine Fisher Fisher, Michael F. Herbst and Youssef Marzouk. Multitask methods for predicting molecular properties from heterogeneous data. Journal of Chemical Physics 161, 014114 (2024). DOI 10.1063/5.0201681
Paul Brehmer, Michael F. Herbst, Stefan Wessel, Matteo Rizzi and Benjamin Stamm. Reduced basis surrogates for quantum spin systems based on tensor networks. Physical Review E 108, 025306 (2023). DOI 10.1103/PhysRevE.108.025306
Eric Cancès, Michael F. Herbst, Gaspard Kemlin, Antoine Levitt and Benjamin Stamm. Numerical stability and efficiency of response property calculations in density functional theory. Letters in Mathematical Physics 113, 21 (2023). DOI 10.1007/s11005-023-01645-3
Michael F. Herbst and Antoine Levitt. A robust and efficient line search for self-consistent field iterations. Journal of Computational Physics 459, 111127 (2022). DOI 10.1016/j.jcp.2022.111127
Michael F. Herbst, Benjamin Stamm, Stefan Wessel and Matteo Rizzi. Surrogate models for quantum spin systems based on reduced-order modeling. Physical Review E 105, 045303 (2022). DOI 10.1103/physreve.105.045303
Daniel G. A. Smith, Annabelle T. Lolinco, Zachary L. Glick, Jiyoung Lee and others. Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry Engine (QCEngine): Automation and interoperability among computational chemistry programs. Journal of Chemical Physics 155, 204801 (2021). DOI 10.1063/5.0059356
Evgeny Epifanovsky, Andrew T. B. Gilbert, Xintian Feng, Joonho Lee, Yuezhi Mao and others. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. Journal of Chemical Physics 155, 084801 (2021). DOI 10.1063/5.0055522
Michael F. Herbst, Eric Cancès and Antoine Levitt. DFTK: A Julian approach for simulating electrons in solids. JuliaCon Proceedings 3, 69 (2021). DOI 10.21105/jcon.00069
Dirk R. Rehn, Zilvinas Rinkevicius, Michael F. Herbst, Xin Li, Maximilian Scheurer and others. Gator: A Python-driven program for spectroscopy simulations using correlated wave functions. WIREs Computational Molecular Science 11, e1528 (2021). DOI 10.1002/wcms.1528
Michael Friedrich Herbst and Antoine Levitt. Black-box inhomogeneous preconditioning for self-consistent field iterations in density functional theory. Journal of Physics: Condensed Matter 33, 085503 (2020). DOI 10.1088/1361-648x/abcbdb
Michael F. Herbst and Thomas Fransson. Quantifying the error of the core-valence separation approximation. Journal of Chemical Physics 153, 054114 (2020). DOI 10.1063/5.0013538
Michael Herbst, Antoine Levitt and Eric Cancès. A posteriori error estimation for the non-self-consistent Kohn-Sham equations. Faraday Discussions 224, 227 (2020). DOI 10.1039/D0FD00048E
Michael F. Herbst, Maximilian Scheurer, Thomas Fransson, Dirk R. Rehn and Andreas Dreuw. adcc: A versatile toolkit for rapid development of algebraic-diagrammatic construction methods. WIREs Computational Molecular Science 10, e1462 (2020). DOI 10.1002/wcms.1462
Michael F. Herbst, James Emil Avery and Andreas Dreuw. Quantum chemistry with Coulomb Sturmians: Construction and convergence of Coulomb Sturmian basis sets at Hartree-Fock level. Physical Review A 99, 012512 (2019). DOI 10.1103/PhysRevA.99.012512
Maximilian Scheurer, Michael F. Herbst, Peter Reinholdt, Jógvan Magnus Haugaard Olsen, Andreas Dreuw and others. Polarizable Embedding Combined with the Algebraic Diagrammatic Construction: Tackling Excited States in Biomolecular Systems. Journal of Chemical Theory and Computation 14, 4870 (2018). DOI 10.1021/acs.jctc.8b00576
Michael F. Herbst, Andreas Dreuw and James Emil Avery. Towards quantum-chemical method development for arbitrary basis functions. Journal of Chemical Physics 149, 84106 (2018). DOI 10.1063/1.5044765